EOS Toolmaker relies on additive manufacturing for complex projects

Author / Editor: Chris Wright / Barbara Schulz

Czech Republic - Innomia uses layer-by-layer DMLS (direct metal laser sintering) technology from EOS to implement conformal cooling, reducing injection moulding time by 17% and improving component quality.

Related Companies

The additively manufactured tooling insert on its build platform.
The additively manufactured tooling insert on its build platform.
(Source: EOS)

The quality of plastic components in modern cars has increased greatly over the years in terms of accuracy of fit, visual appeal and surface feel. Companies in the supply chains, such as Czech Republic-based Innomia, therefore rely more and more on high technology production solutions, particularly for complex applications.

Gallery

The firm has become an enthusiastic advocate of layer-by-layer DMLS (direct metal laser sintering) technology from EOS, which has numerous benefits including allowing components of virtually any external and internal shape to be manufactured.

Innomia’s engineers support the global automotive supplier Magna in developing production processes for injection moulded plastic parts. A recent project concerned the manufacture of a component for the central front armrest in a Škoda car and specifically involved optimising cooling of the mould. Injection moulding of the glass fibre reinforced plastic component is difficult, as uniform dissipation of heat throughout the tool has a significant effect on minimising distortion and improving component quality as it solidifies.

Moreover, temperature control plays a major role in minimising the production cycle time, as the quicker heat is removed, the sooner a component can be ejected and the next one produced.

The tool insert previously used was made of beryllium-copper alloy, which has a high thermal conductivity. Cooling was possible from one side of the insert only, so temperature distribution was uneven. The cooling water needed to be at 16°C to absorb the large amount of heat energy from the insert and component quickly. As the temperature differential was high – around 120°C – the elevated humidity accelerated corrosion, necessitating costly, intensive cleaning of the mould every one to two w

(ID:43846530)