Research and Innovation

Max Planck Institute develops new manganese catalyst to reduce CO2

| Editor: Ahlam Rais

In a paper published in the Journal Nature Communications, Walter Leitner and co-workers account, for the first time, the manganese-catalysed hydroboration of carbon dioxide and other challenging carbonyl groups.
In a paper published in the Journal Nature Communications, Walter Leitner and co-workers account, for the first time, the manganese-catalysed hydroboration of carbon dioxide and other challenging carbonyl groups. (Source: Deposit Photos)

Related Content

Germany – With this new catalyst, the institute has proven that catalysts found on earth that are abundant, cheap, and benign metals such as iron or manganese can be considered as possible alternatives for challenging reduction reactions.

Prof. Walter Leitner, director of the Molecular Catalysis Department at the Max Planck Institute for Chemical Energy Conversion (MPI CEC) and his team have developed a new manganese catalyst capable of reducing carbon dioxide and other challenging substrates in a highly-selective manner.

The quest for new chemical transformations to generate value from non-fossil resources is a major challenge and opportunity for innovation towards sustainable chemical processes. From an ecological and economical standpoint, the efficient reduction of carbonyl groups, i.e., molecular units with a carbon-oxygen double bond, is highly desirable in this context. Especially the C=O units in carboxylic acids and carbonic acid derivatives, including ultimately carbon dioxide itself, are notoriously difficult to be reduced under mild conditions. The derived alcohols constitute valuable building blocks for the synthesis of fuels, plastics and fertilisers on a bulk chemical scale and serve as starting materials in the pharmaceutical industry.

Plastics recycling - wasted time or wasted opportunity?

AMI

Plastics recycling - wasted time or wasted opportunity?

08/21/2018 - A study recently published on the plastics recycling industry notes that this industry will need to develop and grow considerably. read...

Catalysis remains the most potent method to overcome the energy barriers associated with challenging reduction reactions. So far, the considered catalysts are mostly noble metals such as rhodium or platinum, which are expensive and whose mining is associated with high environmental burdens. Recent scientific progress has provided evidence that novel catalysts based on earth-abundant, cheap and benign metals such as iron or manganese might hold great promise as possible alternatives.

In a paper published in the Journal Nature Communications, Walter Leitner and co-workers account, for the first time, the manganese-catalysed hydroboration of carbon dioxide and other challenging carbonyl groups.

The hydroboration, i.e., the addition of a Boron-Hydrogen bond to a C=O unit, is a widely used transformation for the reductive functionalisation of carbonyl groups. It is, however, currently restricted only to very reactive substrates in combination with platinum-group metal catalysts. The breakthrough to extend this principle to carboxylic acids, carbonic acid derivatives and carbon dioxide was achieved by the judicious design of the molecular framework around the active manganese centre. In addition to demonstrating the efficient and highly selective reduction for a broad range of substrates, the team was also able to capture a key intermediate of the catalytic cycle and to elucidate its molecular structure by X-ray crystallography.

Masterbatches protect the environment from plastics pollution

Ampacet/ Fakuma

Masterbatches protect the environment from plastics pollution

09/21/2018 - At Fakuma, U.S.-based Ampacet, with establishments also in Argentina, Luxembourg and Thailand, will focus on its products that have been formulated to enhance post-consumer resins. read...

Following the principles of Green Chemistry, the described synthetic protocols and the molecular insight of this work define a breakthrough towards the development of new catalytic systems based on cheap and benign catalysts for sustainable processes enabling in particular the use of non-fossil carbon feedstocks derived from biomass or carbon dioxide.

This article first appeared on www.process-worldwide.com.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

Discuss anonymously or log in Log In

Avatar
To protect our interests, we store the IP address in addition to the above information. This is solely for the purpose of identifying you as the author of the comment. The legal basis is the protection of legitimate interests in accordance with Art. 6 para. 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45589412 / Markets)