High-speed cutting method for increased tool life

| Author / Editor: Hélène Horent / Rosemarie Stahl

If a chip load is too low or too high, it may cause the tool to wear faster.
If a chip load is too low or too high, it may cause the tool to wear faster. (Source: CC0 Public Domain)

Using traditional turning methods on heat-resistant and hard materials can result in uneven rest materials and irregular surfaces. Maintaining a constant chip load is crucial in the manufacturing process, which is also vital for machining quality parts and for prolonging tool life.

When using traditional turning methods on heat-resistant and hard materials such as super-alloys, large engagement angles and inconsistent chip load can occur at both tool entry and exit. Employing traditional plunge methods on such workpieces may also result in uneven rest materials with irregular surfaces. Furthermore, traditional turning methods can cause adverse effects during the cutting process, such as heavy tool load, high and irregular cutting forces, vibration and poor chip control.

A key factor when high-speed machining these hard materials is maintaining a constant chip load, which remains vital when machining quality parts and prolonging tool life. In particular, if a chip load is too low or too high, it may cause the tool to wear faster, causing many unwanted outcomes. These unwanted results may include chips so large that they cannot get out of the cutter's way fast enough. For example, if a tool is cutting deep down in a slot, the chips will have a hard time getting out of the way quick enough, which may cause the tool to break. Another adverse outcome of a low chip load is a rubbing effect, which prevents the machine from making clean chips, and will also heat up both the tool and the material, drastically reducing tool life. Therefore, maintaining a constant chip load is crucial in the manufacturing process.

ETG signs deal with Mastercam and Cimco

Sales partnership

ETG signs deal with Mastercam and Cimco

03/17/2017 - UK – Engineering Technology Group (ETG), a leading independent machine tools and allied equipment supplier, has strengthened its commitment to offering a ‘total customer solution’ by announcing a new distribution agreement. read...

Esprit features a lathe roughing strategy, Profit Turning, which helps eliminate the adverse effects of traditional turning methods. Profit Turning is a high-speed cutting method added as an additional cutting strategy in Esprit’s existing roughing and grooving cycles. Profit Turning is a productive and secure cutting method that enables manufacturers to make more efficient cuts with consistent chip loads and cutting forces, thereby reducing tool wear and decreasing cycle time. This is achieved using a toolpath algorithm based on an engagement control strategy, which allows for consistent cutting forces universally, and achieves the highest level of productivity.

Content of the Article:

Comments are being loaded ....

Leave a comment
  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 44576923 / CAD/CAM)